Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets.

نویسندگان

  • Yi Shen
  • Zhihui Zhang
  • Kaijun Xiao
  • Jingyu Xi
چکیده

Downsizing the Pt particle to the atomic level in the electro-catalysts is highly desirable to enhance its utilization efficiency in fuel cells. In this study, Pt subnano/nanoclusters were stabilized by the pristine graphene nanosheets (GNSs) derived from chemical vapor deposition and the resulting Pt/GNS hybrids were examined as catalysts for electro-oxidation of alcohols (methanol, ethanol, ethylene glycol and glycerol). In spite of the strong hydrophobic surface, the GNS was proved to be a promising catalyst support because the edges and defects in the GNS could effectively anchor and stabilize the Pt subnano/nanoclusters. The Pt/GNS catalyst showed an extremely high electrochemical active surface area and superior catalytic activity for alcohol oxidation compared with the commercial Pt/carbon black catalyst. The enhanced catalytic performance was attributed to the presence of the discrete Pt subnano/nanoclusters as well as the modulation of the electronic properties of Pt nanoparticles through the chemical interaction of Pt atoms with the edges and defects of the GNS support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker.

In this report, we succeed in constructing a hybrid three-dimensional (3D) nanocomposite film by alternatively assembling the graphene nanosheets modified by ionic liquid (IL) and Pt nanoparticles (Pt NPs). In this strategy, an imidazolium salt-based ionic liquid (IS-IL)-functionalized graphene was synthesized by covalently binding 1-(3-aminopropyl)-3-methylimidazolium bromide onto graphene nan...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Platinum Electrodeposition at Unsupported Electrochemically Reduced Nanographene Oxide for Enhanced Ammonia Oxidation

The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from car...

متن کامل

Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 39  شماره 

صفحات  -

تاریخ انتشار 2014